In this series, you will do one of the most amazing and important calculation in QED: you will calculate the anomalous magnetic moment of the muon (or electron), which is defined as $a_{\mu} \equiv \frac{g-2}{2}=F_{2}(0)$, at $\mathcal{O}(\alpha)$. This calculation gave Schwinger the 1965 Nobel prize (along Tomonaga and Feynman). So take a deep breath and let's dive into the calculation.

1. Draw the Feynman diagram for the $\mathcal{O}\left(e^{3}\right)$ contribution to the anomalous magnetic moment of a muon (or electron) of mass $m$ and prove that its expression can be written as

$$
\begin{gather*}
F_{\mu}=-i e^{3} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{N_{\mu}}{D},  \tag{1}\\
N_{\mu}=\bar{u}^{\prime} \gamma_{\lambda}\left(\not p^{\prime}+q q+m\right) \gamma_{\mu}(\not p+q q+m) \gamma^{\lambda} u,  \tag{2}\\
D=\left[\left(p^{\prime}+q\right)^{2}-m^{2}\right]\left[(p+q)^{2}-m^{2}\right]\left[q^{2}\right] . \tag{3}
\end{gather*}
$$

Careful that there is no $(-i)$ at the external field vertex, because it was factored out in the definition of $F_{\mu}$.
2. Prove that $N_{\mu}$ can be simplified to the following expression

$$
\begin{equation*}
N_{\mu}=4 p^{\prime} \cdot p\left(\bar{u}^{\prime} \gamma_{\mu} u\right)+2\left(\bar{u}^{\prime} \gamma_{\mu} \phi p^{\prime} u\right)+2\left(\bar{u}^{\prime} \not p \phi \gamma_{\mu} u\right)+\left(\bar{u}^{\prime} \gamma_{\lambda} \phi q \gamma_{\mu} \phi \gamma^{\lambda} u\right) . \tag{4}
\end{equation*}
$$

and argue why the first term in this expression can be dropped for this specific calculation.
Hint: Use the Dirac equation for $u$ and $\bar{u}^{\prime}$, as well as the anti-commutation relations for the gamma matrices.
3. Prove that

$$
\begin{equation*}
\frac{1}{D}=2 \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{\left[q^{\prime 2}-m^{2}(x+y)^{2}\right]^{3}}+\mathcal{O}\left(k^{2}\right) \tag{5}
\end{equation*}
$$

with $q^{\prime} \equiv q+x p^{\prime}+y p$.
Hint: Use Feynman parametrization as well as on-shell conditions for the muon (or electron). After simplifying the whole expression, use the fact that we are interested in the region $k^{2} \rightarrow 0$.
4. Use the change of variable from 3 . and prove that $N_{\mu}$ can be written in the following form

$$
\begin{equation*}
N_{\mu}=-2 \bar{u}^{\prime}\left(y \gamma_{\mu} \not p \not p p^{\prime}+x \not p \not p p^{\prime} \gamma_{\mu}\right) u+\bar{u}^{\prime} \gamma_{\lambda}\left(x \not p^{\prime}+y \not p\right) \gamma_{\mu}\left(x \not p^{\prime}+y \not p\right) \gamma^{\lambda} u+\bar{u}^{\prime} \gamma_{\lambda} q^{\prime} \gamma_{\mu} q^{\prime} \gamma^{\lambda} u . \tag{6}
\end{equation*}
$$

Hint: Drop terms linear in $q^{\prime}$, use on-shell conditions for the muon (or electron), and remember also that terms proportional to $\bar{u}^{\prime} \gamma_{\mu} u$ can be dropped, as they contribute only to $F_{1}$.
5. Bring (6) to the following form

$$
\begin{equation*}
N_{\mu}=2 \bar{u}^{\prime}\left[m y \gamma_{\mu} \not p^{\prime}+m x \not p \gamma_{\mu}-\left(x \not p^{\prime}+y \not p\right) \gamma_{\mu}\left(x \not p^{\prime}+y \not p\right)\right] u \tag{7}
\end{equation*}
$$

Hint: Use the Dirac equation, the identities $\gamma_{\lambda} \gamma_{\mu} \gamma^{\lambda}=-2 \gamma_{\mu}, \gamma_{\lambda} \phi b \phi \gamma^{\lambda}=-2 \phi b \phi$, and think how you can treat the $q^{\prime 2}$ term from the hints of series 7 . Terms proportional to $\bar{u}^{\prime} \gamma_{\mu} u$ and of $\mathcal{O}\left(k^{2}\right)$ can be dropped.
6. Make the replacement $x \rightarrow \frac{1}{2}(x+y)$ and $y \rightarrow \frac{1}{2}(x+y)$, since we are integrating over a a symmetric region under the exchange $x \leftrightarrow y$ (antisymmetric parts under this exchange will drop) and prove that (7) can be simplified further to the following expression

$$
\begin{equation*}
N_{\mu}=-2 i m\left(\bar{u}^{\prime} \sigma_{\mu \nu} u\right) k^{\nu}\left[(x+y)-(x+y)^{2}\right] \tag{8}
\end{equation*}
$$

Hint: Use momentum conservation to turn the $p^{\prime}$ on the right over to $p$ as well as the $p$ on the left to $p^{\prime}$. Use also the hints from the previous questions, as well as the definition $\left[\gamma_{\mu}, \gamma_{\nu}\right]=-2 i \sigma_{\mu \nu}$.
7. Put everything together and prove that $\left.F_{2}\left(k^{2}\right)\right|_{k^{2} \rightarrow 0} \equiv F_{2}(0)$ is

$$
\begin{equation*}
F_{2}(0)=8 i e^{2} m^{2} \int_{0}^{1} d x \int_{0}^{1-x} d y\left[(x+y)-(x+y)^{2}\right] \int \frac{d^{4} q^{\prime}}{(2 \pi)^{4}} \frac{1}{\left[q^{2}-m^{2}(x+y)^{2}\right]^{3}} \tag{9}
\end{equation*}
$$

Hint: Remember the decomposition of $F_{\mu}$ in $F_{1}$ and $F_{2}$.
8. Prove that $F_{2}(0)=\frac{e^{2}}{8 \pi^{2}}$ and thus that the anomalous magnetic moment of the muon (or electron) at $\mathcal{O}(\alpha)$ is $a_{\mu}=\frac{\alpha}{2 \pi}$.
Hint: Remember that

$$
\begin{equation*}
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left[q^{2}-a^{2}\right]^{3}}=-\frac{i}{32 \pi^{2} a^{2}} \tag{10}
\end{equation*}
$$

Congratulations! You have just completed a calculation worthy of a Nobel prize!

