Quantum Field Theory II

Series 10 - One-loop muon/electron vertex function at $\mathcal{O}(\alpha)$.
In this series you will calculate analytically the muon/electron vertex function at $\mathcal{O}(\alpha)$, but this time, you will focus more on the $\mathcal{O}(\alpha)$ correction to the form factor $F_{1}\left(q^{2}\right)$. A large part of the procedure from series $9\left(\mathcal{O}(a)\right.$ correction to form factor $\left.F_{2}\left(q^{2}\right)\right)$ will be repeated here, but it is still an important exercise to do once more, so you master one-loop calculations to the maximum.

1. Draw the Feynman diagram for the $\mathcal{O}\left(e^{2}\right)$ correction to the muon/electron vertex function and prove that its expression can be written as

$$
\begin{equation*}
\bar{u}\left(p^{\prime}\right) \delta \Gamma^{\mu}\left(p^{\prime}, p\right) u(p)=2 i e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\bar{u}\left(p^{\prime}\right)\left[k \gamma^{\mu} k_{k}^{\prime}+m^{2} \gamma^{\mu}-2 m\left(k+k^{\prime}\right)^{\mu}\right] u(p)}{\left[(k-p)^{2}+i \epsilon\right]\left[k^{\prime 2}-m^{2}+i \epsilon\right]\left[k^{2}-m^{2}+i \epsilon\right]}, \tag{1}
\end{equation*}
$$

with $k^{\prime}=k+q$.
Hint: Use the identity $\gamma_{\lambda} \gamma_{\mu} \gamma^{\lambda}=-2 \gamma_{\mu}$ and think which of terms drop.
2. Using Feynman parametrization, prove that

$$
\begin{equation*}
\frac{1}{\left[(k-p)^{2}+i \epsilon\right]\left[k^{\prime 2}-m^{2}+i \epsilon\right]\left[k^{2}-m^{2}+i \epsilon\right]}=\int_{0}^{1} d x d y d z \delta(x+y+z-1) \frac{2}{\left(\ell^{2}-\Delta+i \epsilon\right)^{3}}, \tag{2}
\end{equation*}
$$

with $\ell \equiv k+y q-z p$ and $\Delta \equiv-x y q^{2}+(1-z)^{2} m^{2}$.
3. Use the change of variables from 2 . and prove that the numerator can be simplified to

$$
\begin{align*}
\text { Numerator } & =\bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu}\left(-\frac{1}{2} \ell^{2}+(1-x)(1-y) q^{2}+\left(1-2 z-z^{2}\right) m^{2}\right)\right. \\
& \left.+\left(p^{\mu}+p^{\prime \mu}\right) m z(z-1)+q^{\mu} m(z-2)(x-y)\right] u(p) \tag{3}
\end{align*}
$$

What happens to the term proportional to q^{μ} and why?
Hint: Group the numerator in terms of $A \gamma^{\mu}+B\left(p^{\mu}+p^{\prime \mu}\right)+C q^{\mu}$ and think how to treat terms proportional to $\ell^{\mu} \ell^{\nu}$. You will also need the anticommutation relations for gamma matrices, as well as the Dirac equation. Also remember that $x+y+z=1$.
4. Prove that

$$
\begin{align*}
\bar{u}\left(p^{\prime}\right) \delta \Gamma^{\mu}\left(p^{\prime}, p\right) u(p) & =2 i e^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \int_{0}^{1} d x d y d z \delta(x+y+z-1) \frac{2}{\left(\ell^{2}-\Delta+i \epsilon\right)^{3}} \\
& \times \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu}\left(-\frac{1}{2} \ell^{2}+(1-x)(1-y) q^{2}+\left(1-4 z+z^{2}\right) m^{2}\right)\right. \tag{4}\\
& \left.+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 m} 2 m^{2} z(z-1)\right] u(p) .
\end{align*}
$$

Hint: Use the Gordon identity.

You can now clearly see the decomposition in a term proportional to γ^{μ} and one proportional to $\sigma^{\mu \nu}$, which are related to the form factors F_{1} and F_{2} respectively.
For the last step you have to perform the $d^{4} \ell$ integrals. You have already done similar calculations in the previous series in dimensional regularization. You could of course proceed like this in this case too, if you want, however this time it would be beneficial to do the same calculation using Pauli-Villars regularization, so that you see this approach too in practice.
The problematic integral is the following one

$$
\begin{equation*}
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\ell^{2}}{\left[\ell^{2}-\Delta\right]^{m}}=\frac{i(-1)^{m-1}}{(4 \pi)^{2}} \frac{2}{(m-1)(m-2)(m-3)} \frac{1}{\Delta^{m-3}}, \tag{5}
\end{equation*}
$$

because for $m=3$, which is our case, it becomes divergent.
One way to tackle it is to do the following replacement in the photon propagator in the initial expression (1)

$$
\begin{equation*}
\frac{1}{(k-p)^{2}+i \epsilon} \rightarrow \frac{1}{(k-p)^{2}+i \epsilon}-\frac{1}{(k-p)^{2}-\Lambda^{2}+i \epsilon} \tag{6}
\end{equation*}
$$

with Λ a large mass. In this way the integrand is unaffected for small k (since Λ is large), but cuts off smoothly when $k \geq \Lambda$.
5 . Repeat the steps in 1 . and 2 . and prove that the only thing that changes in the integral with the heavy photon is the following

$$
\begin{equation*}
\Delta \rightarrow \Delta_{\Lambda}=-x y q^{2}+(1-z)^{2} m^{2}+z \Lambda^{2} \tag{7}
\end{equation*}
$$

6. Prove that the final expression for the one-loop vertex correction becomes

$$
\begin{align*}
\bar{u}\left(p^{\prime}\right) \delta \Gamma^{\mu}\left(p^{\prime}, p\right) u(p) & =\frac{\alpha}{2 \pi} \int_{0}^{1} d x d y d z \delta(x+y+z-1) \\
& \times \bar{u}\left(p^{\prime}\right)\left(\gamma^{\mu}\left[\log \frac{z \Lambda^{2}}{\Delta}+\frac{1}{\Delta}\left((1-x)(1-y) q^{2}+\left(1-4 z+z^{2}\right) m^{2}\right)\right]\right. \\
& \left.+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 m} \frac{1}{\Delta} 2 m^{2} z(z-1)\right) u(p) \tag{8}
\end{align*}
$$

Hint: Use the following expressions for the integrals

$$
\begin{gather*}
\int \frac{d^{4} \ell}{(2 \pi)^{4}}\left(\frac{\ell^{2}}{\left[\ell^{2}-\Delta\right]^{3}}-\frac{\ell^{2}}{\left[\ell^{2}-\Delta_{\Lambda}\right]^{3}}\right)=\frac{i}{(4 \pi)^{2}} \log \frac{\Delta_{\Lambda}}{\Delta} \tag{9}\\
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\left[\ell^{2}-\Delta\right]^{3}}=\frac{1}{2 i(4 \pi)^{2}} \frac{1}{\Delta} . \tag{10}
\end{gather*}
$$

Observe also that the convergent terms - which are proportional to (10) - are modified by terms of order Λ^{-2}, which you can ignore.
Let's now focus on the term proportional to γ^{μ}, which has to do with the form factor $F_{1}\left(q^{2}\right)$. In the expression (8), you can see that there is a UV divergence, due to the logarithm, and an also an IR divergence, due to the term proportional to Δ^{-1}. Both have to be addressed.

- The UV divergence can be taken care of by making the substitution $\delta F_{1}\left(q^{2}\right) \rightarrow \delta F_{1}\left(q^{2}\right)-$ $\delta F_{1}(0)$.
- The IR divergence can be cured by pretending that the photon has a small non-zero mass μ, so the denominator related to the photon $(k-p)^{2}$ becomes $(k-p)^{2}-\mu^{2}$, which makes Δ become $\Delta+z \mu^{2}$ (algebraically the same computation as in 5 .).

7. Using this information, prove that the form factor $F_{1}\left(q^{2}\right)$ takes the following form at $\mathcal{O}(\alpha)$

$$
\begin{align*}
F_{1}\left(q^{2}\right) & =1+\frac{\alpha}{2 \pi} \int_{0}^{1} d x d y d z \delta(x+y+z-1) \\
& \times\left[\log \frac{m^{2}(1-z)^{2}}{m^{2}(1-z)^{2}-q^{2} x y}+\frac{m^{2}\left(1-4 z+z^{2}\right)+q^{2}(1-x)(1-y)}{m^{2}(1-z)^{2}-q^{2} x y+\mu^{2} z}\right. \tag{11}\\
& \left.-\frac{m^{2}\left(1-4 z+z^{2}\right)}{m^{2}(1-z)^{2}+\mu^{2} z}\right]+\mathcal{O}\left(\alpha^{2}\right) .
\end{align*}
$$

8. (Optional) Find the expression for the form factor $F_{2}\left(q^{2}\right)$ at $\mathcal{O}(\alpha)$, calculate the anomalous magnetic moment of the muon/electron and verify the result you found in the same calculation in series 9 .
Hint: Focus on the term proportional to $\sigma^{\mu \nu}$ in (8).
